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Fig. 1. (a) Cross-section view of planar MIC structure analyzable by the

computer program of [4]. (b) Shielded rnicrostrip line.

An Accurate Bivariate Formulation for Computer-Aided

Design of Circuits Including Mlcrostrip

Y. L. CHUA, J. B. DAVIES, AND D. MIRSHEKAR-SYAHKAL

Abstract —An accurate and fast bivariate interpolation tecfudque is used

to compute the microstrip parameters at an arbitrary frequency and of any

strip width. This teefmique aflows computation of the effective dielectric

constant, characteristic impedance, dielectric loss, and the conductor loss

of microstrip in a time appropriate for computer-aided design application.

By combining interpolation teefniques with a higbfy accurate theory,

computing is more accurate or faster than earlier theories, which achieve

speed of computation by a priori approximations.

I. INTRODUCTION

Various theories exist for @crostrip and related planar lines

which are ‘exact-in-the-limit.’ Properly implemented, these result

in a computer program where for any analysis the designer can

choose between an approximate, cheap result and an accurate,

expensive result, the cost being measured in computer time and

possibly computer storage. Similar to the approximate, cheap

result, is the use of an a priori approximate theory, such as the

many quasi-TEM theories, and approximate frequency-depen-

dent theones [1], [2]. However, for interactive computer-aided

design (CAD), and on other occasions, the time or cost of the

accurate results may not be acceptable, and the designer has to

make an awkward compromise.

The purpose of this paper is to show how the accurate results

of a microstrip analysis program [3], [4] can be used to provide

the data base for a subsequent program which in turn can give

accurate and fast results over some specified range of parameters,

such as frequency and strip width. It involves essentially bivariate

interpolation over specified ranges, and as such, the method can

be applied to many two-parameter problems. In this paper, the

technique is illustrated with the accurate evaluation of four

microstrip characteristics (phase velocity, characteristic imped-

ance, attenuation due to conductor losses, and dielectric losses).

Based on a published computer program [4], the computing times
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are reduced by a factor of a hundred or more in calculating these

four characteristics over a continuous range of frequencies and of

strip width.

II. THEORY

The theory of this paper is applied and illustrated with just the

one basic computer program, one for the accurate analysis of

rnicrostrip, but its application to similar programs is implicit.

Reference [4] describes a program that considers the cross sec-

tions of Fig. l(a), and for either single or coupled rnicrostrip

calculates the effective dielectric constant Ceff (or phase velocity).

Then, if required, it calculates the characteristic impedance ZC,

attenuation due to imperfect conductor aC, and attenuation due

to imperfect dielectric ad.

Though the program is efficient in its class, it is still slow for

CAD purposes. If results of the program Ceff, ZC, aC, and ad are

obtained over the range of specified strip widths w: and frequen-

cies f, ~ets of this data can be considered as bivru-iaie functions of

w and f. We assume that the designer has control of, or needs

results of, continuous parameters w and f, whereas the dielectric

thickness and permittivity are of discrete values dictated by the

substrate manufacturer. Other parameters affecting the results are

the height and width of the conducting enclosure. These can be

fixed at certain acceptable dimensions, possibly large enough to

have negligible influence on Ceff, etc.

Having generated the ‘data sets, the objective is to find a

suitable bivariate interpolation scheme which can accurately and

efficiently give the Vrdues of ceff, ZC, a=, and ad at any (w, f )

values-not just at the data set points. Since accuracy and high

efficiency are prerequisites for the interpolating method, the

‘ spline’ technique using a ‘tensor product’ algorithm has been

found to fulfill the requirements [5]. There are other methods for

interpolation in one dimension, but their effectiveness for two-

dimensional problems is subject to dispute [6].

Splirte interpolation by means of the basis-spline function is a

relatively new technique. Evolved through research on piecewise

polynomial interpolation, it has gained importance in numerical

analysis. It is widely used in computer graphic software, where

extra smoothness, fast system response, and good interpolating

accuracy are needed [7]. To interpolate with spline functions,

details can be found in [5], [7]. However, a brief account seems

appropriate for its use for the microstrip line.

We consider the one-dimensional spline technique first, the
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bivariate spline being obtained as a tensor product from the two

one-dimensional spaces.

Consider a set of data points

{g(t,): i=l,2,...,n} (1)

over the interval [a, b] of the variable t, and let {XI, X2,. . .,x. +l}

denote a set of ‘break-points’ where

xl<a=tl<xz<tz, ..., t~_l<x~=b<X~+l. (2)

Suppose that the interpolant function ~(y) is defined by a

piecewise continuous set of polynomials of kth degree such that

~(.Y)=~l(Y) for XISYKX1+l. (3)

The above technique is called ‘ piecmvise polynomial interpola-

tion’ and offers several advantages over conventional techniques.

The main feature of (3) is that, for a function ~(y) with r

continuous derivatives (k > r +1), the interpolation error is re-

duced by increasing k and/or decreasing the interval ranges

[x,, x,+ ~]. Although an increase in k theoretically improves the

error, choosing a large k value is not always advisable, due to

round-off errors; the high condition number co~ected with high

degree polynomials can give rise to drastic errors [8]. In piecewise

polynomial interpolation, high degrees can be avoided by use of

suitably small intervals, and round-off error can be kept limited.

The break-points {xi } are chosen according to the problem

requirements, and can even be taken as coincident with the

points {ii }. However, it should be noticed that often, interpolat-

ing at points between rather than al the break-points enhances the

stability of the solution and makes the interpolation function

insensitive to the end conditions [5].

To obtain the interpolation coefficients, one must decide on

boundary conditions to be applied at the breakpoints, and differ-

ent polynomials result from different choices. The orthodox

k th-order spline interpolation is a piecewise polynomial that has

(k – 2) continuous derivatives at its breakpoints. This continuity

of derivatives has the advantage of giving smooth characteristics

without being reduced to a single polynomial.

The maximum smoothness given by the spline interpolation is

not always required, and in order to overcome the shortcomings,

a new representation has been developed [5]. With this approach,

the function f(y) is given by

f(Y) =x@z,k,r(Y) (4)
1

where II(y) is called the i th basis-spline function of order k for

the nondecreasing knot sequence {s,}, and a, is the basis-spline

coefficient. The knot sequence is obtained through consideration

of the number of continuity conditions to be applied at the

breakpoints.

As mentioned earlier, the one-dimensional spline interpolation

of (4) is not adequate for our problem, but the theory can be

extended to our two-dimensional case. An efficient way of achiev-

ing a surface spline interpolation is through the tensor product of

the basis functions B,, ~,,( y) and B,, ~,,(z) in they and z coordi-

nates. The theory is now applied to the microstnp problem. The

procedure is explained through the following numerical example.

III. NUMERICAL RESULTS

For the microstrip shown in Fig. l(b), the parameters ceff, ZC,

aC, and ad have been computed by the program in [4], over the

range of frequencies 1 to 9 GHz, at intervals of 1 GHz. The strip

width w has been considered at values of 0.1,0.2,. ..,1.1 mm. The

data set for c,ff that results is plotted in Fig. 2. Similar data sets

for ZC, aC, and ad are computed but not illustrated.
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Fig. 2, Dependence of effective dielectric constant (c/vP)z on frequency and

microstrip width. Data is for substrate dielectric constant of 9.7, d = 9.635

mm, h = 19.365 mm, and a/w= 20 (in notation of Fig. l(b)).

TABLE I

EFFECTIVEDIELECTRICCONSTANTCOMPUTEDDIRECTLY, AND WA

INTERPOLATION,AT’<RANDOM” VALUES OF FREQUENCYAND

STRIPWIDTH*

Freq. (GHz) w (m) direct
ceff

Ceff interpolated

6.88800 0.591600

4.556oo 0.296600

8.542oo 0.696800

8.637oo 0.649300

6.342oo 0.5376OO

3.485oo 0.171900

8.13500 0.590400

6.29100 0.636800

3.81100 0.684000

3.895oo 0.224900

6.66499 6.66473

6.19397 6.19381

6.84832 6.84855

6.80318 6.80358

6.5822o 6.58264

5.90373 5.8978o

6.71788 6.71784

6.68612 6.68653

6.62883 6.62881

6,04223 6.04656

*The geometry is that of Fig. l(b), with the parameters of Fig. 2.

These four generated data sets form the data-base for the

two-dimensional (w and j) interpolation computer program,

based on the theory of Section II. The basis of the program is

described in [5], and our problem is arranged in two parts. In the

first (which is executed just once for a given range of parameters)

the spline coefficients, a, of (4), are computed from the above

described data set. The second part then uses the computed

coefficients as a regular data base and generates very quickly the
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rnicrostrip parameters Eeff, ZC, aC, and ad for any provided w

and f.

The two-dimensional interpolation for this problem has been

set to include cubic spline functions off, and parabolic spline

functions of w. For the w-dependence the interpolation is carried

out between knots while for the f-dependence it has been arranged

at knots. As mentioned in the preceding section, these arrange-

ments raise the accuracy and stability of the algorithm. The

orders of the spline functions were experimentally determined for

the desired stability, and to give a reasonable compromise be-

tween CPU time and accuracy.

Table I displays some of the exact data set for Ceff alongside

values computed by the bivariate interpolation program. The

frequencies and -widths were successive ‘pseudo-random’ numb-

ers generated over the valid ranges 1 to 9 GHz and 0.1 to 1.1

mm, and rounded to 4 decimal figures before use as data for the

test. The differences in this Table indicate that the interpolation

error is indeed very small, with an rms error of less than 0.04

percent. Through experiments with the program, it was found

that the CPU time for computing a set of microstrip parameters

is at least 100 times less that of the ofiginal program. The final

CPU time is then of order tens or hundreds of milliseconds,

depending on the range of parameters, the computer, etc.

IV. CONCLUSIONS

The lack of accuracy in earlier approximate solutions for the

microstrip line gives the motive to find a new, accurate, and fast

technique for computation in times appropriate for CAD pur-

poses. A bivariate interpolation has been used to compute all the

microstrip parameters with high accuracy and efficiency. The

data base is provided in a ‘once-for-all’ computer run with a very

accurate program and analysis. In subsequent computation, per-

haps as part of an interactive or automated design procedure, the

bivariate interpolation makes use of the basis-spline functions

and the tensor product.

Following this same technique, described for microstrip, other

planar lines can be similarly programmed. Interpolation by

basis-spline functions becomes distinctly superior for lines (or

circuits) whose characteristics are not easily approximated on

physical, a priori grounds.

Although this bivariate interpolation is adequate for many

circumstances, circuits with more than two ‘continuous variables’

(such as strip width, strip separation, and frequency of a micro-

strip directional coupler) need a more general mukivtiate algo-

rithm. To the authors’ knowledge, no such efficient algorithm has

yet been established.

POSTSCRIPT

Referees have suggested possible publication of the associated

computer programs. The two programs have no documentation

suitable for publication, but copies of the extant programs (in

Fortran IV) maybe obtained from J. B. Davies.
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A Technique for Measuring the Effective Dielectric

Constant of a Mlcrostrip Lhe

S. HUBBELL AND D. J. ANGELAKOS, FELLOW,IEEE

Abstract —A method is discussed by which the effeetive dielectric con-

stant of a transmission line of complex cross seetion is determined experi-

mentally.

In an effort to determine the insertion loss represented by a

microwave filter, it becomes necessary to determine the effective

dielectric constant and the characteristic impedance of an un-

usual type of microstripline. The microstripline, as seen in Fig. 1,

consists of a metal strip mounted on a dielectric slab which, in

turn, is suspended over a ground plane.

Since this type of microstrip structure does not appear to be

amenable to conventional microstrip formulas, it seems that a

combination of theoretical and experimental techniques would be

necessary in order to predict the line’s parameters. Since the

purpose of this letter is to emphasize the experimental techniques,

only a brief summary will be given on the theoretical aspects. To

theoretically determine the effective dielectric constant and char-

acteristic impedance a variatiomd technique developed by E.

Yamashita and R. Mittra [1] is used, along with standard trans-

mission-line-type formulas. To be more specific, once the distrib-

uted capacitance is determined for the inhomogeneously layered

line (c, #1) (see Fig. 1), and the homogeneous line (c, =1), the

ratio of these quantities gives the effective dielectric constant.

With the effective dielectric constant known, the characteristic

impedance can then be approximated by using conventional

transmission-line formulas along with the homogeneous (c, =1)

capacitance, which is determined by the variational formulation

previously mentioned.
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