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An Accurate Bivariate Formulation for Computer-Aided
Design of Circuits Including Microstrip

Y. L. CHUA, I. B. DAVIES, anp D. MIRSHEKAR-SYAHKAL

Abstract — An accurate and fast bivariate interpolation technique is used
to compute the microstrip parameters at an arbitrary frequency and of any
strip width. This technique allows computation of the effective dielectric
constant, characteristic impedance, dielectric loss, and the conductor loss
of microstrip in a time appropriate for computer-aided design application.
By combining interpolation techniques with a highly accurate theory,
computing is more accurate or faster than earlier theories, which achieve
speed of computation by a priori approximations.

I. INTRODUCTION

Various theories exist for microstrip -and related planar lines
which are ‘exact-in-the-limit.” Properly implemented, these result
in a computer program where for any analysis the designer can
choose between an approximate, cheap result and an accurate,
expensive result, the cost being measured in computer time and
possibly computer storage. Similar to the approximate, cheap
result, is the use of an a priori approximate theory, such as the
many quasi-TEM theories, and approximate frequency-depen-
dent theories [1], [2]. However, for interactive computer-aided
design (CAD), and on other occasions, the time or cost of the
accurate results may not be acceptable, and the designer has to
make an awkward compromise.

The purpose of this paper is to show how the accurate results
of a microstrip analysis program [3], [4] can be used to provide
the data base for a-subsequent program which in turn can give
accurate and fast results over some specified range of parameters,
such as frequency and strip width. It involves essentially bivariate
interpolation over specified ranges, and as such, the method can
be applied to many two-parameter problems. In this paper, the
technique is illustrated with the accurate evaluation of four
microstrip characteristics (phase velocity, characteristic imped-
ance, attenuation due to conductor losses, and dielectric losses).
Based on a published computer program [4], the computing times
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(a) Cross-section view of planar MIC structure analyzable by the
computer program of {4]. (b) Shielded microstrip line.

Fig. 1.

are reduced by a factor of a hundred or more in calculating these
four characteristics over a continuous range of frequencies and of
strip width.

II. THEORY

The theory of this paper is applied and illustrated with just the
one basic computer program, one for the accurate analysis of
microstrip, but its application to similar programs is implicit.

Reference [4] describes a program that considers the cross sec-
tions of Fig. 1(a), and for either single or coupled microstrip
calculates the effective dielectric constant e (or phase velocity).
Then, if required, it calculates the characteristic impedance Z_,
attenuation due to imperfect conductor a,, and attenuation due
to imperfect dielectric a .

Though the program is efficient in its class, it is still slow for
CAD purposes. If results of the program €, Z,, a,, and a, are
obtained over the range of specified strip widths w' and frequen-
cies f, §ets of this data can be considered as bivariate functions of
w and f. We assume that the designer has control of, or needs
results of, continuous parameters w and f, whereas the dielectric
thickness and permittivity are of discrete values dictated by the
substrate manufacturer. Other parameters affecting the results are
the height and width of the conducting enclosure. These can be
fixed at certain acceptable dimensions, possibly large enough to
have negligible influence on €., etc.

Having generated the ‘data sets, the objective is to find a
suitable bivariate interpolation scheme which can accurately and
efficiently give the values of e, Z_, a,, and a, at any (w, f)
values—not just at the data set points. Since accuracy and high
efficiency are prerequisites for the interpolating method, the
‘spline’ technique using a ‘tensor product’ algorithm has been
found to fulfill the requirements [5]. There are other methods for
interpolation in one dimension, but their effectiveness for two-
dimensional problems is subject to dispute [6].

Spline interpolation by means of the basis-spline function is a
relatively new technique. Evolved through research on piecewise
polynomial interpolation, it has gained importance in numerical
analysis. It is widely used in computer graphic software, where
extra smoothness, fast system response, and good interpolating
accuracy arc needed [7]. To interpolate with spline functions,
details can be found in [5], [7]. However, a brief account seems
appropriate for its use for the microstrip line.

We consider the one-dimensional spline technique first, the
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bivariate spline being obtained as a tensor product from the two
one-dimensional spaces.
Consider a set of data points

{g(t):i=1,2,---,n} 1)

over the interval [a, b] of the variable ¢, and let { x;, X5, *, X, 1}
denote a set of ‘break-points’ where
X <a=H<xX;<ty, 0, 1<%, =b<Xx,,. 0)

Suppose that the interpolant function f(y) is defined by a
piecewise continuous set of polynomials of kth degree such that

f(y)=131(y) for xz<)’<xt+1' (3)

The above technique is called ‘piecewise polynomial interpola-
tion’ and offers several advantages over conventional techniques.
The main feature of (3) is that, for a function f(y) with r
continuous derivatives (k > r +1), the interpolation error is re-
duced by increasing k and/or decreasing the interval ranges
[x,,x,.1]. Although an increase in k theoretically improves the
error, choosing a large k value is not always advisable, due to
round-off errors; the high condition number connected with high
degree polynomials can give rise to drastic errors [8]. In piecewise
polynomial interpolation, high degrees can be avoided by use of
suitably small intervals, and round-off error can be kept limited.

The break-points {x;} are chosen according to the problem
requirements, and can even be taken as coincident with the
points {¢,}. However, it should be noticed that often, interpolat-
ing at points between rather than at the break-points enhances the
stability of the solution and makes the interpolation function
insensitive to the end conditions [5].

To obtain the interpolation coefficients, one must decide on
boundary conditions to be applied at the breakpoints, and differ-
ent polynomials result from different choices. The orthodox
kth-order spline interpolation is a piecewise polynomial that has
(k —2) continuous derivatives at its breakpoints. This continuity
of derivatives has the advantage of giving smooth characteristics
without being reduced to a single polynomial.

The maximum smoothness given by the spline interpolation is
not always required, and in order to overcome the shortcomings,
a new representation has been developed [5]. With this approach,
the function f(y) is given by

f)y=YXaB, . (») 4

where B(y) is called the ith basis-spline function of order k for
the nondecreasing knot sequence {s,}, and @, is the basis-spline
coefficient. The knot sequence is obtained through consideration
of the number of continuity conditions to be applied at the
breakpoints.

As mentioned earlier, the one-dimensional spline interpolation
of (4) is not adequate for our problem, but the theory can be
extended to our two-dimensional case. An efficient way of achiev-
ing a surface spline interpolation is through the tensor product of
the basis functions B, , ,(y) and B, , ((z) in the y and z coordi-
nates. The theory is now applied to the microstrip problem. The
procedure is explained through the following numerical example.

III. NUMERICAL RESULTS

For the microstrip shown in Fig. 1(b), the parameters €., Z,.,
a,, and a, have been computed by the program in [4], over the
range of frequencies 1 to 9 GHz, at intervals of 1 GHz. The strip
width w has been considered at values of 0.1,0.2,- - -,1.1 mm. The
data set for e that results is plotted in Fig. 2. Similar data sets

for Z,, a,, and a, are computed but not illustrated.
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Fig. 2. Dependence of effective dielectric constant (c/ VP)2 on frequency and
microstrip width. Data is for substrate dielectric constant of 9.7, d = 0.6353
mm, 4 =19.365 mm, and ¢ /w = 20 (in notation of Fig. 1(b)).

TABLE 1
EFFECTIVE DIELECTRIC CONSTANT COMPUTED DIRECTLY, AND VIA
INTERPOLATION, AT “RANDOM” VALUES OF FREQUENCY AND

Strip WIDTH*
Freq. (GHz) w (mm) €Coff direct €off interpolated
6.88800 0.591600 6.66499 6.66473
4.55600 0.296600 6.19397 6.19381
8.54200 0.696800 6.84832 6.84855
8.63700 0.649300 6.80318 6.80358
6.34200 0.537600 6.58220 6.58264
3.48500 0.171900 5.90373 5,89780
8.13500 0.590400 6.71788 6.71784
6.29100 0.636800 6.68612 6.68653
3.81100 0.684000 6.62883 6.62881
3.89500 0,224900 6,04223 6.04656

*The geometry is that of Fig. 1(b), with the parameters of Fig. 2.

These four generated data sets form the data-base for the
two-dimensional (w and f) interpolation computer program,
based on the theory of Section II. The basis of the program is
described in [5], and our problem is arranged in two parts. In the
first (which is executed just once for a given range of parameters)
the spline coefficients, «, of (4), are computed from the above
described data set. The second part then uses the computed
coefficients as a regular data base and generates very quickly the
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microstrip parameters €, Z,, a,, and a, for any provided w
and f.

The two-dimensional interpolation for this problem has been
set to include cubic spline functions of f, and parabolic spline
functions of w. For the w-dependence the interpolation is carried
out between knots while for the f~-dependence it has been arranged
at knots. As mentioned in the preceding section, these arrange-
ments raise the accuracy and stability of the algorithm. The
orders of the spline functions were experimentally determined for
the desired stability, and to give a reasonable compromise be-
tween CPU time and accuracy.

Table I displays some of the exact data set for e alongside
values computed by the bivariate interpolation program. The
frequencies and -widths were successive ‘pseudo-random’ num-
bers generated over the valid ranges 1 to 9 GHz and 0.1 to 1.1
mm, and rounded to 4 decimal figures before use as data for the
test. The differences in this Table indicate that the interpolation
error is indeed very small, with an rms error of less than 0.04
percent. Through experiments with the program, it was found
that the CPU time for computing a set of microstrip parameters
is at least 100 times less that of the original program. The final
CPU time is then of order tens or hundreds of milliseconds,
depending on the range of parameters, the computer, etc.

IV. CONCLUSIONS

The lack of accuracy in earlier approximate solutions for the
microstrip line gives the motive to find a new, accurate, and fast
technique for computation in times appropriate for CAD pur-
poses. A bivariate interpolation has been used to compute all the
microstrip parameters with high accuracy and efficiency. The
data base is provided in a ‘once-for-all’ computer run with a very
accurate program and analysis. In subsequent computation, per-
haps as part of an interactive or automated design procedure, the
bivariate interpolation makes use of the basis-spline functions
and the tensor product.

Following this same technique, described for microstrip, other
planar lines can be similarly programmed. Interpolation by
basis-spline functions becomes distinctly superior for lines (or
circuits) whose characteristics are not easily approximated on
physical, a priori grounds.

Although this bivariate interpolation is adequate for many
circumstances, circuits with more than two ‘continuous variables’
(such as strip width, strip separation, and frequency of a micro-
strip directional coupler) need a more general multivariate algo-
rithm. To the authors’ knowledge, no such efficient algorithm has
yet been established.

POSTSCRIPT

Referees have suggested possible publication of the associated
computer programs. The two programs have no documentation
suitable for publication, but copies of the extant programs (in
Fortran IV) may be obtained from J. B. Davies.
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A Technique for Measuring the Effective Dielectric
Constant of a Microstrip Line

S. HUBBELL aND D. J. ANGELAKOS, FELLOW, IEEE

Abstract — A method is discussed by which the effective dielectric con-
stant of a transmission line of complex cross section is determined experi-
mentally.

In an effort to determine the insertion loss represented by a
microwave filter, it becomes necessary to determine the effective
dielectric constant and the characteristic impedance of an un-
usual type of microstripline. The microstripline, as seen in Fig, 1,
consists of a metal strip mounted on a dielectric slab which, in
turn, is suspended over a ground plane.

Since this type of microstrip structure does not appear to be
amenable to conventional microstrip formulas, it seems that a
combination of theoretical and experimental techniques would be
necessary in order to predict the line’s parameters. Since the
purpose of this letter is to emphasize the experimental techniques,
only a brief summary will be given on the theoretical aspects. To
theoretically determine the effective dielectric constant and char-
acteristic impedance a variational technique developed by E.
Yamashita and R. Mittra [1] is used, along with standard trans-
mission-line-type formulas. To be more specific, once the distrib-
uted capacitance is determined for the inhomogeneously layered
line (e, #1) (see Fig. 1), and the homogeneous line (¢, =1), the
ratio of these quantities gives the effective dielectric constant.
With the effective dielectric constant known, the characteristic
impedance can then be approximated by using conventional
transmission-line formulas along with the homogeneous (¢, =1)
capacitance, which is determined by the variational formulation
previously mentioned.
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